Idempotent matrix: A	quare matrix A is called idem	potent matrix if $A^2 = A$
----------------------	-------------------------------	----------------------------

Example of an idempotent matrix :	$Let \mathbf{A} = \begin{bmatrix} -1 & 2 & 4 \\ 1 & -2 & -4 \\ -1 & 2 & 4 \end{bmatrix}$	
	then $A^2 = \begin{bmatrix} -1 & 2 & 4 \\ 1 & -2 & -4 \\ -1 & 2 & 4 \end{bmatrix}^2 = \begin{bmatrix} -1 & 2 & 4 \\ 1 & -2 & -4 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} -1 & 2 & 4 \\ 1 & -2 & -4 \\ -1 & 2 & 4 \end{bmatrix}$ $= \begin{bmatrix} 1+2-4 & -2-4+8 & -4-8+16 \\ -1-2+4 & 2+4-8 & 4+8-16 \\ 1+2-4 & -2-4+8 & -4-8+16 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 4 \\ 1 & -2 & -4 \\ -1 & 2 & 4 \end{bmatrix}$	
	$i.e., \mathbf{A}^2 = \mathbf{A}$	

Exercises:

i.	$\mathbf{A} = \begin{bmatrix} 3 & -6\\ 1 & -2 \end{bmatrix}$	ii.	$\mathbf{A} = \begin{bmatrix} 3 & -6\\ 1 & -2 \end{bmatrix}$	iii.	$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
iv.	$\mathbf{A} = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$	v.	$\mathbf{A} = \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix}$	vi.	$\mathbf{A} = \begin{bmatrix} -1 & 3 & 5\\ 1 & -3 & -5\\ -1 & 3 & 5 \end{bmatrix}$

Z: x+ iy, where x, y are real numbers and i= J-1 is called a complex number. Z = x - ly is called the "conjugate" of the complex number 2. Conjugate of a matoix :-The matrix obtained by replacing its elements by the corresponding conjugate complex numbers is called conjugate of a matrix. Toansposed conjugate of a matoix: The transpose of the conjugate of a matrix 'A' is called to ansposed conjugate of a matoir.

Complex Conjugates of Matrices				
original	2 + 3i	i 6	5 - 4i	ר ו
matrix	7 2 ·	- 3i	-i	
complex	2 - 3i	-i 6	i + 4i	┛
conjugate	7 2 -	+ 3i	i	
conjugate transpose	2 - 3i -i 6 + 4i	7 2 + 3i i	these the dime multi	e are not correct nsions for plication

Hermitian matrix.

A square matrix A is called Hermitian matrix if the transpose of the conjugate of A is equal to A i.e. where $(\overline{A})^{T} = A$

Show that,	Show that,
$A = \begin{bmatrix} 4 & 1-3i \\ 1+3i & 7 \end{bmatrix}$ is Hermitian.	$A = \begin{bmatrix} -2 & 2+i & 4\\ 2-i & 3 & i \end{bmatrix}$ is Hermitian.
Solution:	$\begin{bmatrix} 4 & -i & 1 \end{bmatrix}$
We have to show that, $(\overline{A})^{T} = A$	Solution:
So	We have to show that, $(\overline{A})^{T} = A$
$\overline{A} = \begin{bmatrix} 4 & 1+3i \\ 1-3i & 7 \end{bmatrix}$ then $(\overline{A})^{T} = \begin{bmatrix} 4 & 1-3i \\ 1+3i & 7 \end{bmatrix}$	So $\overline{A} = \begin{bmatrix} -2 & 2-i & 4\\ 2+i & 3 & -i\\ 4 & i & 1 \end{bmatrix}$ then
$\Rightarrow (\overline{A})^{\mathrm{T}} = A$	$(\bar{A})^{T} = \begin{bmatrix} -2 & 2+i & 4\\ 2-i & 3 & i\\ 4 & -i & 1 \end{bmatrix}$ $\Rightarrow (\bar{A})^{T} = A$

Exercises:

i.
$$A = \begin{bmatrix} 1 & 1-i & 2\\ 1+i & 3 & i\\ 2 & -i & 0 \end{bmatrix}$$

ii.
$$A = \begin{bmatrix} 2 & 2+i & 4\\ 2-i & 3 & i\\ 4 & -i & 1 \end{bmatrix}$$

iii.
$$A = \begin{bmatrix} 1 & 2-3i & 3+4i\\ 2+3i & 0 & 4-5i\\ 3-4i & 4+5i & 2 \end{bmatrix}$$

iv. Show that,
$$A = \begin{bmatrix} 1 & 1+i & 2+3i\\ 1-i & 2 & -i\\ 2-3i & i & 0 \end{bmatrix}$$
 is Hermitian and \overline{A} is Hermitian